Lecture 8: Proof techniques

Mathematical system: A system consists of Axioms, Definitions, and Terms is called a
Mathematical system. We prove or disprove any statement within a mathematical system. Let
us define some terms which are related to a mathematical system directly or indirectly.

1.
2.

1

Definition: A precise description or meaning of a mathematical term.

Theorem: A proposition that has been proved to be true. A theorem is of two kinds:
Lemma and Corollary.

Lemma: A theorem that is usually not too interesting in its own right but is useful in
proving another theorem.

Corollary: A theorem that follows immediately from another theorem.
Conjecture: A statement that is suspected to be true but yet to prove.

Example: The 4-color conjecture: any map on the plane can be colored with just four
colors so that no two adjacent regions (sharing a border, not just a point) have the same
color.

Goldbach’s conjecture: Every even number greater than 2 can be written as the sum of
two primes.

Axiom: A statement that is assumed to be true without proof.
Example: Every non-empty subset of N contains its least element.

Paradox: A statement that can be shown, using a given set of axioms and definitions,
to be both true and false at the same time.

Example: Nobody goes to Murphy’s Bar anymore as it’s too crowded.

Methods of Proof:

By a proof, of a proposition p = ¢, we mean an argument that establishes the truth value of
the proposition. Since the argument can be given in different forms and hence we can have

different proof techniques.

1.

Direct Method: Using p is true and with the help of other axioms, definitions and
previously derived theorems, we here show that ¢ is true.

(a) Example: If m is odd and n is even integer, then show that m + n is odd integer.
Proof: We use the definitions of even and odd integer.

m is odd if there is an integer k; such that m = 2k; + 1 and n is even integer if there
is an integer ko such that n = 2k,.



Then m+mn = 2k; + 1+ 2ky = 2(ky + ko) + 1 = 2k + 1, where k = ki + ko. So, m+n
is odd.

2. Proof by Contradiction In this technique, we assume that q is false, that is, —q is true.
Note that =(p — ¢) = (p A —q), that is to say, p — ¢ is true if and only if (p A —q) is false.
In other words, p A —¢q is a contradiction.

(a)

Example: For any integer x if 2 is even, then z is even.

Proof: Suppose z is not even and z? is even. So x = 2k; + 1 and 2% = 2k, for some
integers kq, ko. Then we have (2k; + 1)> = 2k,. This implies 4(k? + ki) + 1 = 2k,.
But 4(k% + k1) + 1 is odd and 2k, is even, so these cannot be equal. Thus we have a
contradiction.

Example: Prove that \/2 is irrational.
Proof: Suppose v/2 is rational. Then we can write § = /2, where (p,q) = 1.

Then squaring both sides, we get p? = 2¢?. This implies p is even, that is, p = 2k
for some integer k. But then ¢® = 2k2, that is, ¢ is even. This gives a contradiction
that (p,q) = 1.

Example: Prove that primes are infinite.

Proof: Suppose there are only k primes py, po, ..., pr. Now consider n = p1ps ... pp+
1. Since n is not a prime so there is some prime p; such that p; divides n. Also p;
divides p1ps ... p,. This implies p; divides n — p1ps ... pr = 1. This is a contradiction
as the smallest prime is 2.

Example: Prove that there are no integers z and y such that 2? = 4y + 2.

Proof: Suppose there are integers z and y such that 22 = 4y + 2 = 2(2y + 1). So
22 is even and therefore x is even. Let z = 2k for some integer k. Then substituting
this, we get 2k? = 2y + 1. But 2k? is even while 2y + 1 is odd, so these cannot be

equal. Thus we have a contradiction.

3. Proof by Contrapositive: Note that p = ¢ = —=(p A —q) = =(—=¢ Ap) = =((—q) A
~(=p)) = (=g = —w).
Thus p = q is logically equivalent to =¢ = —p. In other words, saying that if p is true
then ¢ is true is equivalent to if ¢ is false then p is false.

(a)

(b)

Example: For any integer x if 22 is even, then z is even.

Proof: Suppose x is not even. So x = 2k; + 1 for some integer k;. Then we have
x? = (2k; + 1) = 4(k? + k1) + 1. This shows that x? is not even.

Example: Let a and b be integers. If a + b is even, then a and b are either both
odd or both even.

Proof: Suppose that a and b are not both odd and both even. So one of a and b
is odd and other is even. Without loss of generality, assume that a is even and b is



odd. So a =2k and b = 2] + 1 for some integers k,[. Therefore a +b = 2(k +1) + 1.
So a + b is odd.

4. Proof by Cases: If p = ¢ and p is partitioned into cases r, s, that is, p = r V s. Then
from the below truth table, we see that p = ¢= (rVs) =q¢=(r=q) A (s = q).

ris|lq|rVvs|(rvs)=q|lr=q|s=q|(r=q¢AN(s=q)
T|T|T] T T T T T
T|T|F T F F F
T F|T F T T T T
T|F|F T F F T F
F|T|T| T T T T T
F|T|F T F T F F
F|F|T F T T T T
F|F|F F T T T T

So if p as a proposition involves “or”; it is sufficient to consider each of the possibilities
for p separately.

(a) Example: Prove that there is no possible integer n such that n? + n3 = 100.
Proof (Method 1): If n? + n® = 100 then we have

n? <100 and n® < 100. This implies n < 10 and n < 4. So we have to check for the
cases n = 1,2, 3,4. This gives the following cases:

Forn=1,n*+n*=1+1=2# 100,
Forn =2, n?+n=4+8=12+# 100,
For n =3, n? +n® =9+ 27 = 36 # 100,
For n = 4, n? +n® = 16 + 64 = 80 # 100.

Proof (Method 2): n? +n* = 100 is equivalent to n?(1 +n) = 100. This is an
expression of factors of 100 into two numbers n? and 1 + n.

Note that possible divisors of 100 are : 2,4,5,10,25,50 and out of then for the possi-
bility of n? = 4 and n? = 25.

Thus for n? =4, n =2 and (1 +n) = 3, then we get n?.(1 +n) = 4.3 = 12 # 100,

Similarly, for n? = 25, n = 5 and (1+n) = 6, then we get n?.(1+n) = 25.6 = 150 #
100.

(b) Example Prove that if n is an integer, then n? > n.

Proof: Proof is divided into three cases: (i) if n = 0 (ii) n > 1 is positive, (iii)
n < —1 is negative.

Case 1: If n = 0, then 02 > 0 holds.
Case 2: If n > 1, then multiplying both sides by n, we get n? > n.

Case 3: if n < —1, then since n? > 0, we get n? > n.



(c) Example Use a proof by cases to show that |xy| = |z||y|, where z and y are real
numbers.

Proof: The proof is divided into four cases:

Case 1: When x,y > 0, the result holds.

Case 2: When = > 0 and y < 0, then zy < 0. So, |zy| = —zy = 2(—y) = |z||y|.
Case 3: When y > 0 and x < 0, then as in Case 2.

Case 4: When z < 0 and y < 0, then zy > 0. So, |zy| = zy = |z||y|.

5. Proof by Counterexample: Suppose we have problem: Prove or disprove A = B.
Thus if the proposition A = B is not true then to show that =(A = B) is true for some
instances.

If the problem is of the form Vz, A(x) = B(x), then its negation is Iz (= B(z) A A(z)).

Thus to prove the original statement is not true, we have to find an x such that (=B(z) A
A(x)) is true.

2

(a) Example: Prove or disprove: for all positive integetr n, n®* — n + 41 is prime.

Solution: Let us disprove by counterexample. If the statement is not true then we
have to find a positive integer n such that n? —n + 41 is not a prime.

Let n = 41. Then n? — n + 41 is equal to 1681, which is not a prime.
(b) Example: Prove or disprove: for all positive inetegrs n, 2" 4+ 1 is a prime.
Solution: For n =1, 2" 4+ 1 = 3, which is prime.
For n =2, 2" + 1 = 5, which is prime.
For n =3, 2" +1 =9, which is not a prime.

6. Existence Proofs: An existence proof is a proof of a statement of the form Jz P(x).
Such proofs are generally fall into one of the following two types:

(a) Constructive Proof: Establish P(z() for some zy in the domain of P.

i. Example: Prove that If f(z) = 2® + x — 5, then there exists a positive real
number z, such that f'(z) = 7.

Proof: Find f'(z) = 7, this gives zy = v/2.

(b) Nonconstructive Proof: Assume no x( exists that makes P(zy) true and derive
a contradiction. In other words, use a proof by contradiction.

i. Example: Pigeonhole Principle: If n+1 pigeons are distributed into n holes,
then some hole must contain at least 2 of the pigeons.

Proof: Assume n + 1 pigeons are distributed into n boxes. Suppose the boxes
are labeled By, Bs, ..., B,, and assume that no box contains more than 1 object.
Let k; denote the number of objects placed in B;. Then k; < 1fori=1,...,n,



and so k1 + ko + ...+ k, <1+1+...4+1<n. But this contradicts the fact
that ky + ko + ...+ k, = n + 1, the total number of objects we started with.

7. Proof by Induction: There are two form of mathematical induction. One is weak form
and another is strong form. We discuss them separately.

(a)

Weak Form of Mathematical Induction: Let P(n) be a statement on positive
integer n such that

1: P(1) is true,
2: for all £ > 1, P(k + 1) is true whenever one assumes that P(k) is true.
Then P(n) is true for all positive integers n.

Proof. We prove it by contradiction. Suppose there is ny € N such that P(ng)
is false. Let S = {m € N|P(m)is false}. Since ny € S, so S is non-empty. By
well-ordering principle S has a least element say N. By assumption, N > 2 and
hence N —1 € N.

Therefore, from the assumption that N is the least element in S and S contains
all those m € N for which P(m) is false, one deduces that P(N — 1) holds true as
N-—-1<N<2.

Thus, the implication “P(N — 1) is true" and Hypothesis 2 imply that P(N) is true.
This leads to a contradiction and hence our first assumption that there exists ng € N,
such that P(ng) is not true is false.

Example: Let A be a set with n elements, where n € N. Then P(A) has 2"
elements.

Proof. Clearly the result holds for n = 1. Suppose the result holds for all subsets A
with |A] = n. We need to prove the result for a set A that contains n + 1 elements,
Say ap, g,y ..., 0n, Ay

Let B = {ay,...,a,}. Then B C A with |B| = n, so by induction hypothesis
|P(B)| = 2". Note that P(B) ={S C {a1,...,an,an41}|ani1 € S}

Therefore it is easy to see that P(A) = P(B)U{S U {a,1} : S € P(B)}. Also,
P(B)yN{SU{ans1} : S€ P(B)} =0 as a,1 &€ S for all S € P(B).

So by inclusion inclusion-exclusion principle

[P(A)] = |P(B)| + {S U{ani1} : S € P(B)} = |P(B)| +|P(B)| = 2" + 2 = 271,

Corollary of weak form of mathematical induction: Let P(n) be a statement
on positive integer n such that for some fixed positive integer ng

1: P(ng) is true,
2: for all kK > ngy, P(k+ 1) is true whenever one assume that P(k) is true.
Then P(n) is true for all positive integer n > ny.

Strong Form of the Principle of Mathematical Induction: Let P(n) be a
statement on positive integer n such that

1: P(1) is true,



2: P(k + 1) is true whenever one assumes that P(m) is true, for all m, 1 <m < k.
Then P(n) is true for all positive integer n.

Corollary of strong form of mathematical induction: Let P(n) be a statement
on positive integer n such that for some fixed positive integer ng,

1: P(ng) is true,
2: P(k + 1) is true whenever one assume that P(m) is true, for all m, no < m < k.

Then P(n) is true for all positive integer n > ny.
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